POWER TRANSFORMER

March 2015

Engineering Department

WEST BENGALE STATE ELECTRICITY TRANSMISSION COMPANY LIMITED

CIN: U40101WB2007SGC113474; Website: www.wbsetcl.in
1. **SCOPE:**

This specification covers design, engineering, manufacture & assembly of 3-Phase, 400/220/33 KV 315MVA, 220/132/33 KV 200 & 160 MVA, 220/33 KV 80 MVA & 50 MVA, 132/33 KV 20MVA, 31.5 MVA & 50 MVA Power Transformer complete with all fittings and accessories required for efficient and trouble free operations of the transformer, testing at manufacturer's works and customer's premises, supply, loading at factory, delivery at site, unloading, handling, dragging for proper storage at site on the plinth of transformer if the same is ready at respective site or at suitable location as per direction of site-in-charge of customer.

2. **GENERAL REQUIREMENT:**

The Transformer shall be multi-winding, oil immersed complying as per Specific Technical parameters and suitable for outdoor installation.

Rated Capacity and Voltage of the Transformers shall be guided by the respective Tender Documents issued time to time. The specification covers for the following transformers as per present requirement of the company:

b) 50MVA/80MVA - 220/33KV, 20MVA / 31.5 MVA / 50 MVA - 132/33KV.

SPECIFIC REQUIREMENT:

(i) Type Test: The transformers should be Type Tested as per IS 2026 or IEC 60076 in conjunction with their relevant Part. Necessary test documents of previously tested similar transformer within last 5 years from date of NIT shall have to be submitted with the bid.

(ii) Dynamic Effect of Short Circuit

For 400 kV Class Auto transformer:

Bidder should have successfully carried out Dynamic Short Circuit test on three phase bank of any rating of 400/220/33kV or higher voltage class of Auto transformer as on the date of NIT and shall enclose the relevant Test Report and certificate along with bid. In case bidder has not successfully tested any rating of 400/220/33kV or higher voltage class Auto transformer for Dynamic Short Circuit test, their bid shall be considered technically non responsive. This shall be applicable for 400kV class Auto transformer of all rating.
For 220 kV Class Transformer:

Bidders should have successfully carried out Dynamic Short Circuit Test on any rating of 220 kV or above class transformer as on the date of NIT and shall enclose the relevant Test Report and Certificate along with bid. In case bidder has not successfully tested 220 kV or above class transformer for Dynamic Short Circuit Test, their bid shall be considered technically non-responsive. This shall be applicable for 220 kV class Transformer of all rating.

For 132 kV Class Transformer:

Bidders should have successfully carried out Dynamic Short Circuit Test on any rating of 132kV or above class transformer as on the date of NIT and shall enclose the relevant Test Report and Certificate along with bid. In case bidder has not successfully tested 132kV or above class transformer for Dynamic Short Circuit Test, their bid shall be considered technically non-responsive. This shall be applicable for 132kV class Transformer of all rating.

(iii) **Sweep Frequency Response Analysis (SFRA/FRA)** shall have to be carried out as special test for each transformer at manufacturer’s premises in presence of representative of WBSETCL free of cost. Test result shall have to be handed over to WBSETCL. Before commissioning of the Transformer at site, the same SFRA/FRA test will have to be carried by the test engineers of the manufacturer in presence of customer’s representative for comparing the results to take the decisions of the commissioning. The Testing Engineers & FRA kit for such pre-commissioning site testing shall have to be arranged by the manufacturer free of cost.

(iv) **Tests at Manufacturer’s Works**: The Transformers shall be subjected to type & routine test, special tests and no load & load loss measurement as per relevant IS as mentioned in the Clause “TEST AT FACTORY AND TEST CERTIFICATES”.

(v) **Guaranteed Technical Particulars**: The Bidder shall furnish all guaranteed technical particulars as called for in this specification along with each copy of Bid submission. Bids lacking information in this respect may not be considered.

(vi) **Core Materials**: Core materials should be directly procured from either the manufacturer or their accredited reputed marketing organization and not through any agent.

3. **STANDARD:**

The Power Transformer covered under this specification shall comply with the requirements of the latest edition of following Standards:

i) IS:2026 (Part I to IV) - Specification for Power Transformer

ii) IS:2099 & IS:3347 - Bushing for alternating voltage above 1000 volt

iii) IS : 6600 - Guide for loading of oil immersed transformer

iv) IS : 335 - Specification for transformer oil

v) CBIP - Manual on transformer.

vi) IEC-60076 - Power Transformer

vii) IEC-60214 - On Load Tap changer.

viii) IEC-354 - Loading Guide for Oil immersed Transformer

ix) IEC-551 - Tr. Sound Level.
4. **DEVIATION:**

Normally the offer should be as per Technical Specification without any deviation. But any deviation felt necessary to improve performance, efficiency and utility of equipment must be mentioned in the

'Deviation Schedule' with reasons, duly supported by documentary evidences and advantages of such Deviation shall be mentioned. Such deviations suggested may or may not be accepted. But deviations not mentioned in Deviation Schedule will not be considered.

5. **GENERAL DESIGN:**

a) The Transformer and accessories shall be designed to facilitate easy inspection, cleaning and repairs. All fittings and accessories shall be designed to ensure satisfactory operation under worst conditions of load and voltage as may be met under working conditions in the system.

b) All materials used shall be of best quality and of the class most suitable for working under the conditions specified. It shall withstand the variations of temperature and atmospheric conditions without undue stressing etc. i.e. not affecting the workability/durability of the various parts of the transformer.

c) All outdoor fittings and accessories, including bushings insulators with their mounting, shall be so designed as to avoid pockets in which water can collect. All electrical connections shall be of ample cross sections for carrying the specified currents continuously without undue heating. All fixing bolts and screws shall be reliable under worst conditions of operations.

d) Transformers shall be suitable for continuous operation with a frequency of 50 Hz and variation of± 3% without exceeding specified temperature rise.

e) Transformer with tertiary winding and all its accessories including Bushing CTs etc. shall be design to withstand without injury, the mechanical and thermal effects and any external short circuit to earth and of short circuits at the terminals of any winding for a period of 3 Sec. The short circuit level of HV & IV system to which the subject transformer will be connected is 40KA (Sym, rms, 3Ph. Fault on 400KV and 220KV) and 31.5KA (Sym., rms, 3 Ph. fault on 132KV). Transformer shall be capable of withstanding thermal and mechanical stresses caused by symmetrical or asymmetrical faults on any winding.

f) For parallel operation with other transformers, necessary provision is to be kept in transformer RTCC panel for tap changing operation in any of Master/Follower/Independent mode.

g) Clearances of line terminals in Air:
The clearance of HV, IV & LV terminal shall be maintained as specified below:

<table>
<thead>
<tr>
<th>Highest System voltage of equipment (KV rms)</th>
<th>Phase to Phase clearance (mm)</th>
<th>Phase to earth clearance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>4000</td>
<td>3500</td>
</tr>
<tr>
<td>245</td>
<td>2000</td>
<td>1800</td>
</tr>
<tr>
<td>145</td>
<td>1220</td>
<td>1050</td>
</tr>
<tr>
<td>36</td>
<td>350</td>
<td>320</td>
</tr>
<tr>
<td>52</td>
<td>530</td>
<td>480</td>
</tr>
</tbody>
</table>

h) Transformer shall be designed to withstand full lightning impulse voltage as well as chopped and reduced chopped impulse voltage as per relevant clauses of IS:2026 (Pt.-III)/IEC:60076-3.

6. VIBRATION AND NOISE:

Transformer when energizes at normal voltage and freq with fans and pumps are running shall have minimum hum and abnormal noise shall not exceed when measured under standard condition the value specified as per the NEMA standard publication TR-1.

7. TERTIARY WINDINGS:

The 400/220/33KV and 220/132/33 KV transformers shall be provided with delta connected loaded tertiary windings of 33 KV voltage class and shall be suitably rated to withstand the stresses due to short circuit in the system. Transformer with 3-windings shall be of loaded tertiary design.

This stabilizing winding shall be capable of carrying continuously the rated load as specified under S.T.P. The design of the stabilizing winding shall be such that to take care of the effect of transfer surge. Tertiary winding shall be designed to withstand mechanical and thermal stresses due to dead short circuit on its terminals.

8. THE LOADING GUIDELINE:

Over loading of transformer shall be guided by latest IS-6600.
9. **TEMPERATURE RISE:**

Each Transformer shall be capable of operating continuously at its normal rating without exceeding temperature rise and hot spot limits.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ONAN</td>
<td>50°C</td>
<td>50°C</td>
<td>55°C</td>
<td>105°C</td>
<td>250°C</td>
</tr>
<tr>
<td>ONAF</td>
<td>50°C</td>
<td>50°C</td>
<td>55°C</td>
<td>105°C</td>
<td>250°C</td>
</tr>
<tr>
<td>OFAF</td>
<td>50°C</td>
<td>50°C</td>
<td>55°C</td>
<td>105°C</td>
<td>250°C</td>
</tr>
</tbody>
</table>

10. **THERMAL ABILITY TO WITHSTAND SHORT CIRCUIT:**

a) Thermal ability to withstand short circuit shall be demonstrated by calculation and shall be furnished along with the drawing after placement of L.O.A.

b) Designed time period for Short circuit withstand shall be taken as 3 (three) seconds and fault current will be taken as per General Technical Specification. The maximum permissible value of the highest average temp of winding after withstanding the above stipulated Short Circuit shall not exceed 250°C and the submitted calculations shall be as per Cl.No. 9.1 of IS: 2026 (Part-I)

11. **DETAILED TRANSFORMER PARTICULARS. TANK AND TANK COVER :**

a) The tank and cover shall be fabricated from low- carbon mild steel plate of adequate size and suitable for welded construction. The tank so welded shall be reinforced by stiffener of structural steel for general rigidity. Each tank cover shall be of adequate strength and shall not distort when lifted.

b) The tank shall be designed to have sufficient strength to withstand without distortion -

(i) Under full vacuum at an internal pressure, of 3.33KN/sq.mm. absolute (25 torr) for one hour and permanent deflection of flat plate after the vacuum has been released shall not exceed the values specified below :

<table>
<thead>
<tr>
<th>Horizontal Length of flat plate (in)</th>
<th>Permanent deflection (in mm.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to and including 750</td>
<td>5.0</td>
</tr>
<tr>
<td>751 to 1250</td>
<td>6.5</td>
</tr>
<tr>
<td>1251 to 1750</td>
<td>8.0</td>
</tr>
<tr>
<td>1751 to 2000</td>
<td>9.5</td>
</tr>
<tr>
<td>2001 to 2250</td>
<td>11.0</td>
</tr>
<tr>
<td>2251 to 2500</td>
<td>12.5</td>
</tr>
<tr>
<td>2501 to 3000</td>
<td>16.0</td>
</tr>
<tr>
<td>Above 3000</td>
<td>19.0</td>
</tr>
</tbody>
</table>
(ii) Transformer tank of each size, its radiator, conservator vessel and other fittings together or separately shall be subjected to a pressure corresponding to twice the normal head of oil or to the normal pressure plus 35 KN/m² whichever is lower measured at the base of the tank and maintained for one hour. The permanent deflection of flat plates after the excess pressure has been released shall not exceed the figures specified under vacuum test above and

(iii) The tank shall be designed to have sufficient strength to withstand mechanical shock during transport.

c) The internal and external surface including structural steel work and oil filled chambers are to be painted after removing all rust and scale of foreign adhering matter or grease by sand blasting or other approved method. All steel surfaces in contact with insulating oil shall be painted with two coats of heat resistant oil insoluble insulating paint.

d) All steel surface exposed to weather shall be given a primary coat of zinc chromate and shall be applied immediately after cleaning. The second coat shall be of an oil and weather resisting nature and of shade or colour easily distinguishable from the primary. The final coat shall be of epoxy paint of minimum thickness of 80 microns and weather resisting non-fading paint of shade No. 631 of IS:5.

e) All paints shall be carefully selected to withstand heat and weather. The paint shall not scale off or crinkle or be removed by abrasion due to normal handling.

f) The tank construction of 20 MVA / 31.5 MVA/ 50 MVA, 132/33KV transformer shall be of Conventional type Top Cover or Bell Tank construction. The tank construction of transformer having rating of more than 50 MVA & up to 315MVA irrespective of voltage classes and no. of winding shall be of Bell Tank construction. Adequate number of inspection cover shall be provided to give easy access to the bushing or other parts as may be necessary. To make joints oil tight, nitrile rubber gaskets shall be cut to size and shape to avoid joints on gaskets as far as practicable. It shall be fitted with pockets for thermometer and for the bulbs of oil and winding temperature indicators. The thermometer pockets shall be fitted sufficiently above on the surface of the top cover of main tank with a captive screwed top to prevent ingress of water. The pockets shall be located in position of maximum temperature and it shall be possible to remove bulb without lowering the oil in the tank.

g) Bi-directional flanged rollers for moving the transformer on rail gauge (1676 mm) shall be provided. The direction of the roller through 90° (degrees) can be changed by jacking up the assembly. Bi-directional rollers can be locked in required direction by bolting the roller mounting pad welded on the base of the tank and bi-directional flanged rollers bracket with bolts. The tank shall be provided with all fittings and accessories.

h) Lifting lugs shall be provided on all parts of transformer requiring independent handling during assembly or dismantling. In addition, the transformer shall be provided with lifting lugs and bosses properly secured to the side of the tank for lifting complete transformer assembly filled with oil either by crane or by pulley. Pulling lugs shall also be provided to facilitate movement of transformer horizontally.

i) The transformer tank shall be equipped with the following valves and plugs with standard screw connection for piping:

1) Drain valve at the bottom
2) Filter valve at top
3) Filter valve at bottom
4) Sampling valve at top
5) Sampling valve at bottom
6) Radiator shut off valve at top and bottom
7) Buchholz relay shut off valve at both ends of the relay
8) Air release plugs on tank.
9) One no. oil inlet valve

Any other valves & plugs other than those mentioned above, are also to be provided as per requirement.

j) For Three winding Transformer 6 no. thermometer pocket should be provided for WTI & 2 no. for OTI. Amongst 6 no. pocket for WTI, three (3) will be used for direct connection with the WTI in MK of Transformer. Balance three no. (3) shall be provided with PT 100 sensor and Current Converter Unit (CCU) at MK for WTI repeater at the RTCC panel to be installed in Control Room. Similarly amongst Two (2) no. pocket for OTI, one will be used for direct connection with OTI in MK of Transformer. Balance one no. shall be provided with PT 100 sensor and Current Converter Unit (CCU) at MK for OTI repeater at the RTCC panel to be installed in Control Room.

k) For Two winding Transformer 4 no. thermometer pocket should be provided for WTI & 2 no. for OTI. Amongst 4 no. pocket for WTI, Two (2) will be used for direct connection with the WTI in MK of Transformer. Balance Two (2) shall be provided with PT 100 sensor and Current Converter Unit (CCU) at MK for WTI repeater at the RTCC panel to be installed in Control Room. Similarly amongst Two (2) no. pocket for OTI, one (1) will be used for direct connection with OTI in MK of Transformer. Balance one no. (1) shall be provided with PT 100 sensor and Current Converter Unit (CCU) at MK for OTI repeater at the RTCC panel to be installed in Control Room.

l) Design shall be such that Tank cover can be lifted independently without lifting active part of core, winding etc.

m) A step ladder shall be provided with each transformer to step in to the top of the tank.

12. **CORE:**

The magnetic circuit shall be core type. Each limb shall be joined with top and bottom yokes. The laminations shall be made from high grade non-ageing cold rolled grain oriented silicon alloy of HI -B or its equivalent grade steel. The insulation of lamination shall be coated with oxide/silicate/phosphate coating or any coating inert to the action of hot transformer oil. The core should be bottom mounted.

The core shall be of stepped cross-section. The yokes shall be clamped by means of end frames and yoke bolts and limbs shall be clamped by means of clamp plates. Sufficient number of lifting lugs is to be provided on end frames so that core with windings can be lifted when required.

The design of magnetic circuit shall be such as to avoid static discharges, development of short circuit paths within itself or to the earthed clamping structure and production of flux component at right angles to the plane of lamination which may cause local heating.

The insulation for the core to bolts and core to clamps shall be such as to withstand a test voltage of 2 (two) KV rms at 50 Hz for one minute.

The maximum flux density in any part of the core and yoke at the rated MVA, voltage & frequency shall be such that less than 10% continuous over voltage condition does not exceed 1.9 Tesla.
For consideration of over fluxing, the transformer shall be suitable for continuous operation for values of over fluxing at (i) 110% (ii) one minute for 125% and (iii) 5 seconds for 140% of rated voltage.

The prime core materials are only to be used. Bidder’s should furnish following document as applicable as a proof towards use of prime Core material to be submitted before the stage inspection:

(a) Invoice of supplier
(b) Mill’s test certificate
(c) Packing List
(d) Bill of lading
(e) Bill of entry certificate by Custom.
(f) Description of material, electrical analysis, physical inspection, certificate for surface defects, thickness and width of the materials.
(g) Place of cutting of core materials

13. WINDINGS:

The Material of winding conductor should be of electrolytic grade copper of minimum 99.90% purity and free from scales, spills, splits and other defects. The windings shall be so designed that all coil assemblies of identical voltage ratings shall be interchangeable and field repair is possible. The coils shall be supported between adjacent sections by insulating spacers, and the barriers. Bracing and other insulation used in the assembly of the windings shall be arranged to ensure a free circulation of the oil and to reduce hot spots in the windings. The stacks of windings shall receive adequate shrinkage treatment before final assembly and the same shall be assembled in dust controlled chamber.

The insulation of the coils shall be such as to withstand the full electrical strength of the windings. All materials used in the insulation and assembly of the windings shall be insoluble, non-catalytic and chemically inactive in the hot transformer oil, and shall not soften or otherwise be adversely affected under the operating conditions. The dielectric strength of winding insulation shall confirm to values given in IS: 2026, as amended up to date, or as per specific Technical Parameters.

All threaded connections shall be provided with locking facilities.

All leads from the windings to the terminal board and bushings shall be rigidity supported to prevent injury from vibration. Guide tubes shall be used where practicable.

The windings shall be clamped securely in place so that they will not be displaced or deformed during short circuits. The assembled core and windings shall be vacuum dried and suitably impregnated with insulating oil. The copper conductors used in the coil assembly shall be best suited to the requirements and all permanent current carrying joints in the windings and the leads shall be welded or brazed. Oil ducts shall be such as will not impede the free circulation of oil through windings assembly.

The conductor shall be transposed at sufficient intervals in order to minimize eddy currents and to equalize the distribution of currents and temperature along the winding.
14. **TAP CHANGING MECHANISM:**

The transformer shall give full load output on all taps. The transformer shall operate without danger on any particular tapping at the rated MVA within a voltage variation of ±10% of the rated nominal voltage.

For 132/33KV & 220/33 KV transformer ON LOAD TAP CHANGER with bi-directional power flow shall be provided on the 132KV voltage winding & 220KV winding respectively. The tapping range shall be +10% and −10% in 1.25% equal steps. Remote Tap Changer Panel shall also be provided to be installed at our Control Room.

For 220/132/33 KV & 400/220/33KV Auto Transformer Tap coil with bi-directional power flow shall be provided at 132 KV and 400 KV sides respectively of the transformer. The tapping range shall be + 10% and −10% in 1.25% equal steps.

Remote Tap Changer Panel shall also be provided to be installed at our Control Room.

15. **ON LOAD TAP CHANGER:**

This shall be designed suitable for remote control operation from RTCC Panel in the control room to be supplied by the manufacturer in addition to being capable of local manual as well as local electrical operation.

The on-load tap changer shall include the following :-

a) An oil immersed tap selector and arcing switch or arc suppressing tap selector, provided with reactor or resistor for reduction of make and break arcing voltages and short circuits.

b) Motor driven mechanism
c) Control and protection devices
d) Local /Remote tap changer position indicator
e) Manual/Electrical operating device.

The on-load tap changer shall be designed so that the contacts do not interrupt arc within the main tank of the transformer. The tap selector and arcing switch or arc suppressing tap selector switch shall be located in one or more oil filled compartments. The compartment shall be provided with Oil Surge relay. Those compartments shall be designed so as to prevent the oil in tap selector compartment from mixing with the oil in the transformer main tank.

An oil surge relay with trip float arrangement shall be provided for the OLTC unit.

The tap changer shall be capable of permitting parallel operation with either existing or future transformers of the same type as Master or Follower.

The manual operating device shall be so located on the transformer that it can be operated by a man standing at the level of the transformer track. It shall be strong and robust in construction.

The control scheme for the tap changer shall be provided for independent control of the tap changers when the transformers are in independent service. In addition, provision shall be made so that under parallel operation the tap changer will give alarm and visual indication for becoming out of step. Visual indication during the operation of motor shall also be incorporated. The tap change control must ensure step by step operation under all operating conditions.

Necessary interlock blocking independent control when the units are in parallel shall be provided.
Under parallel operation, as may occur if the contactor controlling one tap changer sticks, the arrangement must be such as to switch off supply to the motor so that an out of step condition is limited to one tap difference between the units. Details of out of step protection provided for the taps should be furnished in the bid.

The contactors and associated gear for the tap change driving motors shall be housed in a local kiosk mounted on the transformer. The motors shall be suitable for operation with 3-phase 400 volts, 50 cycle external power supply.

Conventional RTCC Panel:

The supplier shall furnish, in addition to the equipment above, the following accessories mounted in a separate Remote Tap Changer Control (RTCC) panel to be installed in each of the WBSETCL’s Control Room for remote operation.

a) Raise and Lower Push Button Switch
b) Remote tap position indicator and other required devices. One chart showing the voltage corresponding to tap position indicator shall be engraved on a metal sheet and the same shall be fixed near the tap position indicator on the RTCC (Panel).

c) An indication lamp showing tap changing in a progress
d) Master, Follower and Independent selecting switch and other accessories required for complete operation of tap changer.
e) Name plate of each component & relays
f) Winding & Oil temperature (0° –150°C) repeaters to be connected to winding and oil Temperature meter housed in the main Transformer Marshalling Box at outdoor. In addition to above necessary arrangements are to be made in RTCC panel for Hot spot temperature indication and alarm by optical sensor method as mentioned in clause 27.

Complete particulars of the tap changing gear including the capacity of the motor shall be stated in GTP. An under voltage relay shall be incorporated to monitor the 110 Volt AC control circuit voltage of tap changer. Audible Alarm and annunciation shall be provided for failure of control circuit supply, failure of 400 V AC supply to the motor. All the relays requisite for remote tap change operation shall be provided in RTCC panel. The OLTC should have been Type Tested.

16. INSULATING OIL:

Oil for first filling together with 5% extra oil shall be supplied with each transformer. The oil shall comply in all respect with the provisions of the latest edition IS:335 (as amended up-to-date) of specification for New Insulation oils for transformers and switchgears. Particular attention shall be taken to deliver the oil free from moisture having uniform quality throughout in non-returnable steel drums. The quantity of oil for first filling of each transformer shall be stated in the offer.

The oil should have the following characteristics:

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>CHARACTERISTICS</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Interfacial tension at 27°C (min)</td>
<td>0.04 N/m</td>
</tr>
<tr>
<td>2.</td>
<td>Electrical strength (Breakdown voltage)</td>
<td>60 KV (rms) after treatment</td>
</tr>
<tr>
<td>3.</td>
<td>Resistivity at 90°C /27°C</td>
<td>35x10^{12} /1500x10^{12} Ohm-cm</td>
</tr>
<tr>
<td>4.</td>
<td>Dielectric dissipation factor (tan delta at 90°C max.)</td>
<td>0.002</td>
</tr>
</tbody>
</table>
After site processing through filtration and before commissioning, the moisture content shall be as follows:

a) Less than 72.5 KV : 25 ppm
b) 72.5 KV to 145 KV : 20 ppm
c) Above 145 KV : 15 ppm

17. **CONSERVATOR VESSEL:**

a) The conservator is a vessel for oil preservation. The oil level in the conservator shall not be below the level of the H.V. bushing caps unless the bushings are of oil sealed type construction. The size of the conservator tank shall have adequate capacity with highest and lowest visible level to meet the requirement of expansion of total cold oil volume in the transformer and cooling equipment from minimum ambient temperature to 100°C.

b) The conservator shall have one filter valves at suitable location, in addition to the valve specified in the accessories for the main tank. The conservator with sump shall also have a small drain valve and sampling cock, the latter so arranged as not to interfere with oil lines. The oil level gauge shall be mounted on the conservator. The oil level at gauge shall have three indication viz., oil level at 30°C shall be marked on the gauge and indicating range shall be minimum to maximum level.

c) There shall be one “Atmoseal type” sealing to prevent direct contact of transformer oil with the atmospheric air to retard oxidation and contamination of oil.

d) The oil connection from the transformer tank to the conservator vessel shall be arranged at a rising angle of 3 to 9 degree to the horizontal upto the Buchholz relay. The inside diameter shall be 50mm/80mm as per capacity of the transformer and IS: 3639.

e) Valves shall be provided at the conservator to cut off the oil supply to the transformer after providing a straight run of pipe for at least five times internal diameter of the pipe on the tank side of the Buchholz relay and at least three times the internal diameter of the pipe on the conservator side of the Buchholz relay. The pipe connecting the transformer tank with conservator will project above the lowest point in the conservator such that the portion below the pipe acts as a sump where the impurities in conservator will be collected.

f) Magnetic oil level gauge with low oil level alarm suitable for 220Volt ±10% DC supply shall be provided.

g) Atmoseal type conservator shall be filled with oil to a level appropriate to the filling temperature. The oil shall be separated from atmosphere by a flexible aircell of nitrile rubber reinforced with nylon cloth air cell. Flexible aircell of nitrile rubber shall be able to withstand max temp of oil considering continuous operation as well as considering overloading of transformer as per relevant IS/IEC. The connection of air cell to the top of the conservator is to be made by air proof seal to prevent entry of air to the conservator.

h) OLTC Conservator shall have oil indicator made of glass.

i) Dehydrating Filter Breather: Conservator shall be fitted with a dehydrating filter breather. It shall be designed to facilitate the followings:

 (i) Passage of air through silica gel.
 (ii) Silica gel is isolated from atmosphere by an oil seal.
(iii) Two breathers (of identical size) shall be connected in parallel for main
conservator tank. A stop valve shall be provided for each breather and also
for the common pipe line. The same arrangement shall be made for OLTC
tank conservator by providing adequate size of two identical breathers.
(iv) Breathers are to be maintained approx at a height of 1200 mm. above rail top level.
(v) Moisture absorption indicated by a change in colour of the silica gel can be
easily observed from ground level.

18. BUSHING:

Bushing shall have high factor of safety against leakage to ground and shall be so located
as to provide adequate electrical clearances between bushing and grounded parts.
Bushings of identical voltage rating shall be interchangeable. All bushings shall be equipped
with suitable terminals of approved type and size and shall be suitable for bimetallic
connection, if necessary. The insulation class of the high voltage neutral bushing shall
be properly coordinated with the insulation class of the neutral of the high voltage winding.

All main windings, tertiary windings and neural leads shall be brought out to outdoor
through bushings which shall be so located that the full flashover strength will be utilised
and phase to phase and phase to earth clearance shall be more than minimum value
specified below. Location and arrangement of bushing shall follow Indian Standards.

Each bushing shall be so coordinated with the transformer insulation that flashovers will
occur outside the tank.

All porcelain used in the bushings shall be made of the wet process, be homogeneous and
free from cavities or other flaws. The glazing shall be uniform in colour and free from
blisters, burns, and other defects. Upper portion of Bushing made of Porcelain & lower
portion made of Epoxy/porcelain is also acceptable.

Bushings for 420KV, 245 KV and 145 KV & 52 KV voltage class shall be Oil Filled
Condenser type and shall be hermetically sealed. HV Neutral bushing shall be of 36 KV
class for 400 KV & 220 KV class transformers. Bushing for 33 KV delta tertiary winding i.r.o.
160 MVA,200 MVA and 315 MVA Transformer shall be of 52 KV class and of Oil Filled
Condenser type and shall be hermetically sealed. All OIP bushing shall have provision
of measurement of capacitance and tan-delta without dismantling of the bushing. Rating
plate of bushing shall be provided near each type of bushing with terminal marking and
physical position as per IS:2026. Bushing for 36KV shall be Solid porcelain or oil
communicating type.

The electrical and mechanical characteristic of bushings shall conform to IS:2099 and
IS:3347. The characteristic of the oil used in the bushing shall be the same as that of the
oil in the transformer.

Main terminals shall be solder less and "Terminal Connectors" shall be as per cl. No. 19 of
this technical specification. The spacing between the bushings must be adequate to prevent
flashover between phases under all conditions of operation.

All bushings shall be suitable for heavily polluted atmosphere and minimum creepage
distance shall be taken as 25 mm per KV.

Where Bushing mounted Current Transformers are specified, the bushing shall be
removable without disturbing the current transformers.

Bushing Current Transformer:

i) Current transformer shall comply with IS:2705/IEC-185.
ii) It shall be possible to remove the turret mounted current transformers from the Tr. Tank without removing the tank cover. Necessary precautions shall be taken to minimize eddy currents and local heat generated in the turret.

iii) Current transformer secondary leads shall be brought out to a weather proof terminal box near each bushing. These terminals shall be wired out to cooler control cabinet/marshalling box using separate cables for each core.

iv) The technical parameters of Bushing current transformer indicated under Specific Technical Parameters are to be followed One no. Bushing CT (One core, Class:PS) for each phase of 220KV, 132KV, 33KV (tertiary winding) as well as LV winding of 50MVA, 31.5MVA & 20MVA and Neutral side shall be provided.

v) No of Bushing CT’s required for

 a. 400/220/33KV Transformer

 | Bushing | Required |
 |---------|----------|
 | HV | 3no |
 | LV | 3no |
 | Neutral | 3no |

 b. For all other Transformer of different voltage ratios other than 315MVA, 400/220/33KV transformer

 | Bushing | Required |
 |---------|----------|
 | HV | 3no |
 | LV | 3no |
 | Neutral | 1no |

In case of 400/220/33KV Power Transformer, for each phase one Neutral CT, i.e altogether 3- NCTs are to be provided for circulating current protection.

The voltage and current rating of the bushings shall be as follows:

<table>
<thead>
<tr>
<th>Highest System Voltage (KVrms)</th>
<th>Current Rating (Amps.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. For 315 MVA TR :</td>
<td></td>
</tr>
<tr>
<td>420 (HV)</td>
<td>800</td>
</tr>
<tr>
<td>245 (IV)</td>
<td>1250</td>
</tr>
<tr>
<td>52 (LV)</td>
<td>3150</td>
</tr>
<tr>
<td>36 (Neutral)</td>
<td>2000</td>
</tr>
</tbody>
</table>

B. For 200/160MVA TR. :	
245 (HV)	800
145 (IV)	1250
36 (Neutral)	2000

| C. For 50MVA, 31.5MVA & 20MVA TR. : |
145 (HV)	800
36 (LV)	2000
36 (Neutral)	2000

| D. For 80/50MVA, 220/33KV TR : |
245 (HV)	800
36 (LV)	2000
36 (Neutral)	2000
The minimum withstand value of cantilever load of bushings for 60 sec. shall be as follows (refer IS:2099-1986 Cl. 5.5)

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>Load (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>420KV</td>
<td>2500N</td>
</tr>
<tr>
<td>245KV</td>
<td>1600N(for 315MVA Tr.) & 1250N (for 200/160MVA TR).</td>
</tr>
<tr>
<td>145KV</td>
<td>1250N</td>
</tr>
<tr>
<td>52KV</td>
<td>3150N</td>
</tr>
<tr>
<td>36KV</td>
<td>1250N/2000N</td>
</tr>
</tbody>
</table>

19. **TERMINAL CONNECTOR:**

i) The bushing shall be equipped with suitable terminals for connector as specified herein.

ii) Each terminal (including the neutral) shall be distinctly marked on both the primary and secondary side in accordance with the diagram of connection supplied with the transformers.

iii) Vertical/horizontal/universal type bimetallic, rigid connector for bushing stud shall be provided.

iv) Clamp and connector shall be made from Cold forged Aluminum Alloy Plate i.e Extruded Aluminum Clamp and Connector shall be processed through Cold forging for 220KV, 132KV, 52KV & 36KV Bushing and Casting type connector for 400KV class bushing.

v) The Nuts & Bolts associated with equipment of connector pieces shall be MS Hot dip galvanized. Quality of Nuts & bolts shall conform to relevant IS of latest edition.

vi) Minimum thickness at any point of current carrying part of any clamp & connector shall not be less than 12mm.

vii) From outermost hole edge to nearest edge of any clamp & connector the distance shall not be less than 10mm.

viii) The current density of Aluminum/Copper shall be considered as 0.75/1.75 A/sq.mm.

ix) Minimum thickness of Bimetal in bimetallic connection shall be 2mm.

x) Approved vendor for Clamp & Connector are mentioned in WBSETCL portal.

20. **COOLING SYSTEM:**

Type of cooling for this transformer (as per capacity rating) under this specification shall be as follows:

a) Three winding transformer (220/132/33 KV of 200/160 MVA Tr. & 400/220/33KV 315MVA) capacity transformer shall employ ONAN/ONAF/OFAF type cooling. ONAN rating shall be about 60% of OFAF rating. ONAF rating shall be 80% of OFAF rating and OFAF shall be 100% rating of capacity of transformer.

b) Two winding transformer (132/33KV) of 50MVA Capacity transformer & 220/33KV of 80/50MVA capacity transformer shall employ ONAN/ONAF/OFAF type cooling. ONAN rating shall be about 60% of OFAF rating. ONAF rating shall be 80% of OFAF rating and OFAF shall be 100% rating of capacity of transformer.

c) Two winding transformer (132/33KV) of 20MVA & 31.5MVA capacity transformer shall employ ONAN/ONAF type cooling. ONAN rating shall be about 65% of ONAF rating.
21. **RADIATORS:**

The transformers up to 50 MVA Capacity shall have body mounted radiators, whereas transformers above 50 MVA capacity shall have separate plinth & structure mounted radiator and all transformers shall be fitted with detachable radiator consisting of a series of separate circular/elliptical/rectangular, etc. tubes or fins, welded at their top and bottom into headers which in turn are connected to the tank by means of bolted, oil tight, flanged joints. There shall be indicating butterfly or similar valves fitted in between the tank and the headers, which can be kept in open or closed position. There shall also be filter valves for circulation of oil, at each of top and bottom header. One air release plug at the top header shall be provided.

The radiator tubes/fins shall be seamless and made of mild steel/CRCA and in order to prevent rusting epoxy paint of 80 micron shall be applied and minimum wall thickness not less than 1.2 mm, with a clean bright internal surface free from rust and scale. They shall be suitably braced to protect them from mechanical shocks normally met in transportation.

A separate blanking plate shall be supplied to permit the blanking of the main oil connection to each cooler unit when the same is detached. Each cooler unit shall have a lifting eye, oil drain valve at the bottom and a vent at the top.

The bid shall clearly specify the time limit for operation of a transformer carrying full load without forced cooling. The motor operated fans shall be provided for AF rating and oil circulation pumps for OF rating.

All Power transformers shall be installed at new/old substation of WBSETCL anywhere in West Bengal. Actual orientation of radiator bank in case of separate plinth & structure mounted radiators shall be finalised during approval of drawings based on site condition and related approved drawings.

22. **COOLING FANS:**

a) The radiator stacks shall be provided with A.C.3 Phase Motor driven Fans for Forced Air cooling. The fan motors shall be suitable for continuous operation. Blades shall be suitably painted for outside use.

b) The fans shall operate without any abnormal noise. They shall be fitted with guards of close mesh-wire-netting for safety. The terminal connections and the greasing caps of the fan motors shall be accessible without the need of removing any fan guard.

c) Fan shall be so located so that they are readily accessible for inspection and repair.

d) Cooling fans shall not be directly mounted on radiator bank to avoid undue vibration on the same. These shall be located in such a manner as to prevent ingress of rain water. The exhaust air flow from cooling fan shall not be directed towards the main tank in any case.
23 **COOLER GROUPS:**

The whole cooler plant shall be grouped as indicated below:

For ONAN/ONAF cooling: 2×50% cooling banks consisting of radiators & fans. 1(one) standby fan for each bank shall be provided.

For ONAN/ONAF/OAF cooling: 2 x 50% cooling banks consisting of radiators, adequate no. of fans and oil pumps. There shall be at least one stand by pump and fan for each bank of radiators. There would be 2 x 100% oil pumps and motors for cooling and one such oil pump shall feed both the radiator banks. The other pump would remain as standby.

24 **OIL PUMPS:**

Each cooler unit shall consist of a totally enclosed, oil immersed motor- pump, and a forced air cool heat exchanger. Motor & pump shall be enclosed in an oil tight container with motor leads brought through hermetically sealed bushings. Moving parts of motor & pump shall be readily removable without dismantling of cooler and with minimum spillage of oil. Pump shall have open type impeller to permit oil circulation when pump is idle. Heat exchangers, fans and oil pumps shall be completely interchangeable.

Radiators shall be connected to the tank by machined steel flanges welded to Radiator Bank and to the tank through proper gaskets. At each such connection there shall be provided on the tank an indicating shut off valve which can be fastened in either open or closed position.

An oil flow indicator with alarm contacts shall be furnished with each pump assembly to indicate normal pump operation and direction of oil flow. An indication shall be provided in the flow indicator to indicate reverse flow of oil/loss of oil flow.

Oil pump shall be capable of dealing with the maximum output of the transformer and total head which may occur in service and with the varying head due to change in the viscosity of the oil.

Suitable precautionary arrangement should be provided to arrest mal-operation of the main tank Buchholz relay due to starting of the forced oil pumps.

25 **COOLER CONTROL:**

Cooler units shall be suitable for operation with a 400 volts, 3 phase, 50 Hz. A.C. power supply Main and standby power supply shall be given for cooler control and source selected through contactor.

Cooler control equipment for oil pump and fan motors shall be mounted in a marshalling cabinet adjacent to the transformer and shall include necessary MCB with automatic control and annunciator equipment and switches for remote and local control.

Main 400 Volt, 3- phase supply for control of cooler banks shall be taken to cooler control cabinet through a MCB of suitable rating. The supply to cooler fans and oil pumps motors shall be made through individual MCB with overload trip arrangements. The control scheme for the cooler shall be so designed to ensure satisfactory operation of cooler groups as specified in the specification.

The switching in or out of the cooling equipment shall be controlled by winding
temperature and there shall be provision for automatic switching in or out at predetermined temperature differences which should be capable of adjustment and setting at will. Hunting of the transformer cooling equipment should be avoided.

The bidder shall specify the loading of the transformer in case of failure of one or more set of fans or pumps.

Remote control of cooling equipment and its alarm and indicating devices shall be provided in the RTCC panel. Indication for operation of individual fan group and oil pump shall also be provided in the RTCC panel.

26 ACCESSORIES:

Each transformer shall be provided with the following accessories and only type tested accessories shall be supplied. All accessories mounted out door shall have contact enclosure tested with IP-55 as per IS: 13947 in order to avoid mal operation during rain or condensation.

27 TEMPERATURE METERS:

a) One dial type gas thermometer (having 150° scale, with accuracy of 1.5% of FSD) of robust design and in weather proof casing shall be provided for temperature indication of oil of all type power transformers shall be housed in the ground mounted marshalling box to indicate the hot oil temperature. Both alarm and trip contacts shall be provided. Maximum oil temperature indicating pointer shall also be provided. Remote indication of oil temperature shall be provided in RTCC and as such the oil temperature indicator shall be suitable for the same.

b) Indicating type winding temperature indicator: All transformers shall be provided with a device for indicating the combination of top oil temperature and heating by winding current calibrated to follow the hottest spot temperature of the transformer winding. The device shall have a dial type indicator, and in addition a indicating pointer to register the hottest temperature reached. The temperature indicator shall be connected to CT secondary current in one phase of each winding of the transformer. It shall have sufficient contacts for switching in and switching out the cooling employing ONAF/OFAF system with Alarm as well as trip contacts.

c) For 315MVA, 400/220/33KV and 200/160MVA, 220/132/33KV transformers having three separate winding temperature indicator shall be provided each with potential free contacts for control, indication, alarm and trip with independent facility for setting the contacts at any temperature over the whole working range of 20°C to 150°C. Each mercury contact shall have adjustable 10°C overlapping (between ON & OFF) to prevent hunting of cooling fans and/or forced oil pump motors. The winding temperature indicator shall be connected to one phase of each winding of HV/IV/LV windings. Those temperature indicators shall be housed in ground mounted marshalling box. The Accuracy Class of WTI shall be ± 1.5% or better temperature indicator dia shall have linear gradations to clearly read at least every 2°C.

d) Two separate winding temperature indicators with potential free mercury contacts for control, indication, alarm & trip shall be provided in two winding transformer with independent facility for setting the contacts at any temperature over the whole working range for transformer.
of 20°C to 150°C. Each mercury contact shall have adjustable 10°C overlapping (between ON & OFF) to prevent hunting of cooling fans and/or Oil pump motors. Both the Winding temperature indicator shall be housed in ground mounted marshalling box for all two winding transformer shall be connected to one phase of each HV & LV windings. The accuracy class of WTI shall be ±1.5% or better temperature indicator did shall have linear gradation to clearly read at least every 2°C.

In addition to WTI & OTI, optical sensors are to be used for hotspot temperature measurement:

1. Adequate no of optical temperature sensors of at least 14 numbers with the unit as specified below:
 Two winding transformer: 7+7 spares (1+1 spare in each phase of HV & LV winding & 1+1 spare in top oil)
 For Auto Transformer: 7+7 spares (1+1 spare in each phase of HV & IV winding & 1+1 spare in top oil)
 Number of channels in display box shall be minimum 7.

2. Probes shall be all silica, Teflon jacketed fiber with perforation/slits in outer jackets to allow complete filling. The probes shall not get damaged / affected during filtration of the transformer. The fiber with Teflon jacket shall be strong enough to withstand the severe conditions prevailing inside an EHV Transformer.

3. This optical sensors measuring system shall be of direct measurement non calibrating type. Temperature range of the system should be – 30°C to + 200°C & accuracy of +/- 2°C.

4. A temperature measuring system having at least 7 channels shall be mounted on a separate enclosure having degree of protection IP 56 (preferably type tested unit) to measure the temperature from the optical sensors.

5. The measuring unit shall be capable to retain temperature data for at least 90 days at 1 minute interval for all channels and shall have facility to download these data. The system shall have following key features:
 a) Fixing arrangement of sensor at suitable location of the winding in such a way that it will be mechanically protected allowing efficient and secure mounting of sensor tip in the winding in compliance with the annexure E of IEC 60076-2.
 b) The temperature recording of the monitor channels will be obtained in RTCC Panel in control room through repeater.
 c) Alarm output with programmable set points as per user’s choice.
 d) IEC 61850 Protocol on RS 485 or RS 232 ports.
 e) User friendly software to allow easy configuration to monitor for data logging and retrieval.

6. Location of optical temperature sensors inside the transformer shall be finalised during detailed engineering.
28 VALVES:
(i) Two Nos. oil inlet valves located in suitable locations
(ii) One oil drain valve each suitably located at top and bottom
(iii) One filter valve suitably located near the top of the tank
(iv) One filter valve suitably located near the bottom of the tank
(v) One valve each for oil sampling suitably located at bottom and top
vi) Radiator shut off valve at top and bottom.
 vii) Buchholz relay and oil surge relay shut-off valves at both ends of the relays
 viii) Main Conservator – filter, drain, sample valve, air release valve, air release plug.
 ix) OLTC Conservator – Oil filling valve, Drain valve, Suction valve
 x) One drain valve for OLTC
 xi) One oil inlet valve
 xii) One no. Bleed valve with pet cock for Buchholz relay.
 xiii) Any other valves other than those mentioned above for improvement of operation and maintenance facility if required & pointed during drawing approval stage shall also be within the scope of supply of manufacturer.

29 PRESSURE RELIEF DEVICES:
Adequate nos. of pressure relief device with two sets of electrically insulated NO contacts shall be provided for Alarm/Tripping. It shall be of sufficient size to release pressure rapidly that may be generated within the tank to prevent damage to any part of the transformer. It shall operate at a static pressure less than the hydraulic test pressure of the tank. Design shall be such as to prevent ingress of rain water. It shall be mounted on the cover of main tank and shall be designed to prevent gas accumulation.

Gas actuated relay: One double float gas detector relay (Buchholz relay) of reputed make with alarm and tripping contacts to detect accumulation of gas and sudden changes of oil pressures, complete with two shut-off valves and flange coupling to permit easy removal without lowering oil level in the conservator tank. A bleed valve for gas venting and a test valve are to be provided. Pressure relief device & Buchholz relay shall be tested for IP:55 protection in accordance with IS: 13947 to avoid maloperation due to ingress of moisture.

30 GROUNDING TERMINALS:
Two grounding terminals capable of carrying for 3 (three) seconds the full short circuit current of the transformer shall be provided at positions close to the bottom at two corners of the tank for bolting the earthing terminals to the tank structure to suit local condition.

Neutral Earthing Arrangement: The neutral terminal of auto-transformer & two winding
transformer shall be brought to the ground level by adequate sized brass/tinned copper grounding bar (considering the system fault level as stated in STP) supported from the tank by using porcelain insulators. The end of the tinned copper bar shall be brought to the bottom of the tank at the convenient point for making bolted connection to two nos. galvanized steel grounding flat connected to sub-station grounding mat.

31 RATING, DIAGRAM AND PROPERTY PLATES:

The following plates shall be fixed to the transformer tank at an average height readable from the transformer base level.

a) A rating plate bearing the data specified in the appropriate clauses of IS: 2026

b) A diagram plate showing the internal connections and also the voltage vector relationship of the several windings in accordance with the IS and in addition, a plan view of the transformer giving the correct physical location of the terminals. No load voltage shall be indicated in each tap. The winding temperature C.T. and the thermometer pocket shall also be indicated in the said plate.

c) A plate showing the location and function of all valves and air release plugs and plate material preferably in stainless steel.

d) An indoor cubicle for remote control of coolers, position of tap, alarm and indicating devices with the help of control equipments, annunciation, relays, indicating instrument, etc.

e) A separate rating plate embossing different losses obtained after relevant test for each transformer is to be provided.

f) A rating plate for each type of bushing shall be provided and to be fixed at the base of the bushing.

32 GROUND MOUNTED MARSHALLING BOX:

A suitable weather proof cubicle for housing the control, equipment, terminal block etc., made of 3 mm sheet steel, shall be provided for each transformer. The box shall accommodate all (i) winding and oil temperature indicators and (ii) control and protection equipment for cooling plant.

All terminal blocks for cable connection shall be located in this box. Terminal blocks shall be of 1100 Volt grade “Elmex/Connectwell” make and have continuous rating to carry the maximum expected current on the terminals. The terminal block shall be fully enclosed with removable covers of transparent, non-deteriorating type plastic material. Insulating barrier shall be provided between the terminals. The terminal blocks shall have locking arrangement to prevent its escape from the rails. 20% spare terminals are to be provided. These spare terminal blocks shall be uniformly distributed on all the terminal block column. All terminal blocks shall be numbered for easy identification. Terminal blocks shall be arranged with at least 100 mm clearance between two sets of terminal block.

The marshalling box shall be provided with cubicle lamp with door switch, space heater with differential thermostat and removable cable gland plate etc. Cable shall enter from the bottom of the box.

Marshalling box of each type shall be tested for IP-55 in accordance with IS:13947.

All internal wiring shall be carried out with 1100 Volt grade PVC insulated stranded copper conductor of 2.5 sq. mm or larger size as per scheme requirement.
33 **WIRING:**

All control, alarm and indicating devices provided with the transformer shall be wired up to the terminal blocks in the marshalling box.

Wiring from transformer to the cubicle shall be done with PVC wires in conduit or by PVC armoured cable of 1100 V grade. Minimum wire size shall be 2.5mm² copper. Not more than two wires shall be connected to a terminal. 20% spare terminals shall be provided.

All devices and terminal blocks within the marshalling box shall be identified by marking corresponding to the circuit in schematic or wiring diagram. All fuses shall be of cartridge type and IS marked.

Phase marking on each terminal bushing (including neutral) shall be distinctly made on both the primary, secondary and tertiary winding side in accordance with the connection diagram of the transformer.

Interconnection of wires in between transformer and marshalling box will be in the scope of the contractor.

34 **CENTER OF GRAVITY:**

The centre of gravity of the assembled transformer shall be low and as near the vertical centre line as possible. The transformer shall be stable with or without oil. Location of Centre of Gravity shall be shown on the outline general arrangement drawing.

35 **CLEANING AND PAINTING:**

Before painting or filling with oil, all non-galvanised parts shall be completely clean and free from rust, scale and grease and all external rough surfaces on castings, shall be made smooth. The interior of all transformer tanks and other oil filled chambers and internal structural steel work shall be cleaned of all scale and rust by sand blasting or other approved method. These surfaces shall be painted with an oil resisting varnish or paint.

Except for nuts, bolts, and washers, which may have to be removed for maintenance purposes, all external surfaces shall receive a minimum of three coats of paint. The primary coat shall be applied immediately after cleaning. The second coat shall be of oil paint of weather resisting nature and of a shade or colour easily distinguishable from the primary, and the final coats shall be applied after the primary coat has been touched up where necessary. The final coat shall be of a glossy, oil and weather resisting non-fading paint of battle ship grey colour.

All interior surfaces of mechanism chamber and kiosks except those which have received anti-corrosion treatment shall receive three coats of paints applied to the thoroughly cleaned metal surface. The final coat shall be of light colored anti-condensation paint.
36 PACKING & TRANSPORTATION LIMITATIONS:

Power Transformer is to be transported in an atmosphere of nitrogen or dry air at positive pressure.

Necessary arrangement shall be ensured by the manufacturer to take care of pressure drop of nitrogen or dry air during transit and storage till completion of oil filling during erection. The nitrogen or dry air cylinder provided to maintain positive pressure can be taken back by the contractor after oil filling. A gas pressure testing valve with necessary pressure gauge and adaptor valve shall be provided.

The Transformer during transportation shall also be fitted with at least one Electronic impact recorders (on returnable basis) to measure the movement due to impact in all three directions. The acceptance criteria and limits of impact in all three directions which can be withstood by the equipment during transportation and handling shall be submitted by the manufacturer before delivery. The recording shall commence in the factory before despatch and must continue till the unit is installed on its foundation. The data of electronic impact recorder(s) shall be downloaded at site and a soft copy of it shall be handed over to Engineer-in-charge. Further, within three weeks from the placement of the Transformer on the foundation, manufacturer shall communicate the interpretation of the data.

The transformer Main Tank with Core-coil assembly shall be shipped/transported filled with inert gas due to transport weight regulation. If the transformer is equipped with inert gas pressure system, than a low pressure alarm device is to be provided. The alarm device shall be required for extended storage at site.

Special attention shall be paid in packing the accessories & spares to avoid moisture ingress. All parts shall be adequately marked to facilitate field erection. Boxes and crates shall be marked with the contract number and shall have a packing list enclosed showing the parts contained therein.

The Bushings shall be crated & packed and transported as per standard guideline of the Bushing Manufacturer. All care should be taken to avoid any damage of the porcelain due to vibration during transport.

The weights & dimensions of the packages to be transported to site shall be governed by facilities available for the routes by road/rail/ship.

37 LABELS:

Labels shall be provided for all apparatus such as relays, switches, fuses contained in any cubicle or marshalling kiosk.

Descriptive labels for mounting indoor or inside cubicles and kiosks shall be of material that will ensure permanence of the lettering. A mat or stain finish shall be provided to avoid dazzle from reflected light. Labels mounted on dark surfaces shall have white lettering on a black background. Danger notices shall have red lettering on a white background. All plates shall be of material which will not be corroded. Labeling shall be clear, concise and adequate.

Labels for mounting outdoors shall be weather and corrosion proof formed by etching to ensure permanence.

Labels shall be attached to panels with brass screws or with steel screws which have received rust preventive treatment.

Labels should have lettering sizes of at least 1 to 1.5mm stroke width and 3 to 6mm height.
38 CONSTRUCT DRAWINGS AND MANUALS:

After placement of P.O., six copies of following drawings, manuals and literatures shall be submitted to the Chief Engineer, Engg. Deptt., Bidyut Vhaban (9th floor), Salt Lake, Kolkata - 700091.

Drawing for Controls:
- Schematic diagram of transformer cooler control
- Schematic diagram and location of WTI and OTI.
- General arrangement of ground mounted Marshalling Box for all type of transformer.
- Schematic diagram of manual and push button control of on load tap changer.
- Abbreviation table for OLTC and RTCC.
- Explanatory note for RTCC
- General Arrangement & scheme drawing for RTCC
- Explanatory note for transformer cooler
- Wiring diagram of ground mounted Marshalling Box for each type of Transformer.
- Wiring diagram of RTCC panel.
- Drawings other than there mentioned above if required as per provision of Technical Specification for Erection & Maintenance are also to be submitted.

Drawings of Transformer:
- General outline drawing showing front, side elevation, plan of the transformer and accessories with detailed dimensions and detailed legend.
- Detailed foundation plan.
- Drawing of each type of bushings, lifting dimensions, clearance between Terminals of different voltage level and ground, quantity of insulation oil, name plate, details etc.
- Operation and maintenance guide for transformer and ON LOAD TAP CHANGER.
- Transport Outline Drawing
- Valve Schedule Plate
- Measured Loss Plate
- Clamp & connectors
- Rating Plate diagram
- Oil filling instruction plate
- Roller locking arrangement
- Foundation Plan drawing.
- Drawings other than those mentioned above if required as per provision of Technical Specification for Erection & Maintenance is also to be submitted.

Six (06) copies of approved drawings and literatures for each transformer along with soft copy shall be submitted for our record and distribution to site.

Instruction Manuals:

Six (06) copies of operation, maintenance and erection manuals in English language shall be supplied for each transformer against each P.O. The manuals shall be bound volumes and shall contain the drawings and information required for erection, operation and maintenance of the power transformer. The manuals shall include amongst other, the following particulars.

a) Marked erection prints identifying the components parts of the power transformers as dispatched, with assembly drawings.

b) Detailed dimensional drawings, assembly and descriptions of all the components.
39 TENDER DRAWING, LITERATURE AND TYPE TEST CERTIFICATES:

One copy of each drawings incorporating the following particulars along with one set of complete type test report on similar transformer carried out as per IS & IEC in Govt.

Recognized Test House or Laboratory/NABL accredited Laboratory shall be submitted by each bidder with each copy the bid to the Purchaser for the purpose of evaluation of bid as follows:

General outline drawing showing dimensions, net weights of transformers, tap changing gear, marshalling box and their shipping weights.

Sectional views showing the general construction features and disposition of various fittings and accessories.

Bushing drawing showing full details of construction of HV/LV/Tertiary condenser bushing and other technical data, weight of bushing assembly etc.

Dimension of the largest part to be shipped and the position in which these are to be transported.

Technical literature on tap changing control, cooling system, relays meters and general construction feature for winding temperature indicators, Buchholz relays, oil temperature indicator, Oil pumps, pressure release device (where required) etc.

Transformer similar to offered one should have type tested as per relevant IS.

40 TRANSFORMER LOSSES, EVALUATION OF BID & ACCEPTANCE

<table>
<thead>
<tr>
<th>Rating of Transformer</th>
<th>Guaranteed Maximum No Load Loss on principal tap at Rated Voltage and frequency, in KW</th>
<th>Guaranteed Maximum Load Losses (Copper + stray loss) at rated current on principal tap at 75 °C in HV-IV combination for Auto Transformer & HV-LV combination for Two winding Transformer, in KW</th>
<th>Guaranteed Maximum Auxiliary/Cooler Loss in KW</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MVA 132/33 Power Tr</td>
<td>17</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>50 MVA 132/33 & 220/33 KV Power Tr</td>
<td>25</td>
<td>140</td>
<td>5</td>
</tr>
<tr>
<td>160 MVA 220/132/33 KV Auto Tr</td>
<td>35</td>
<td>205</td>
<td>8</td>
</tr>
<tr>
<td>200 MVA 220/132/33 KV Auto Tr</td>
<td>40</td>
<td>330</td>
<td>12</td>
</tr>
<tr>
<td>315 MVA 400/220/33 KV Auto Tr</td>
<td>65</td>
<td>445</td>
<td>15</td>
</tr>
</tbody>
</table>
a) The Transformers are to be designed with maximum permissible losses as indicated above.

b) The bidder must clearly specify that the offered losses are "Maximum" (including IS/IEC tolerance) and no further positive tolerance as per IS/IEC shall be applicable on the offered values during evaluation as well as during testing of transformer.

c) Bids offering with losses beyond the maximum limits mentioned above shall be treated as non-responsive and rejected.

d) Loss Capitalization shall be done with the accepted bids with loss values within specified limit. For the purpose of evaluation of bids, the capitalized cost of iron loss, load loss and auxiliary loss (KW) shall be added to the quoted price of the transformer at the following rates:

 i) Capitalized value of No Load loss per KW – Rs. 4,95,943/-
 ii) Capitalized value of load loss per KW – Rs. 2,02,345/-
 iii) Capitalized value of Auxiliary loss per KW – Rs. 1,98,377/-

e) However once a bidder becomes successful on the basis of loss capitalization with certain declared loss value, they have to strictly achieve the same loss value during the course of testing of transformers, offered for supply. No tolerance as per IS/IEC will be applicable.

f) If they fail to do so, the offered transformer will be rejected and only replaced transformer with declared loss value will be accepted.

g) In this process, the delay so occurred will be on the vendor's account.

h) If the vendor fails to achieve the declared loss during second time, the contract will be terminated at the vendor's risk and cost.

41 STAGE INSPECTION:

Stage inspection will be carried out by the customer on Core, Coil & Tank during the manufacturing stages of the transformer. The manufacturer will have to call for the stage inspection and shall arrange the inspection at manufacturer's premises or manufacturer's bidders premises free of cost. Stage inspection will be carried out on 1 (one) number Transformer against an offer of minimum 50% of the ordered quantity as mentioned in delivery schedule. On the basis of satisfactory Stage Inspection, manufacturer will proceed further. The following stage inspection shall be carried in one inspection.

Prior to stage inspection following documents shall have to be submitted by manufacturer for verification:

1) Document related to prime core, procurement establishing traceability vide relevant Cl. of Technical Specification of Power Transformer.

2) Documents for coil establishing traceability.

Following tests have to be carried out in stage inspection.

I. On Core

1) Flux density checking of assembled core (without having any insulating tape etc. rapped around the core) vis-à-vis measurement of step thickness, lamination width etc.

2) Window height, leg center dimension, core diameter of assembled core.

3) Physical verification of core in respect of lamination thickness, bend, camber and waviness etc.
4) Carlite test, Watt loss and ageing test on the sample of prime core. (Core sample shall be selected during stage inspection and sent to any NABL accredited laboratory for tests under Sl.No. 4)
5) Loss measurement of Prime core (Loss/Kg).
6) 2KV test between core and Yoke clamps.

II. On Coil

1) Physical verification of HV, IV and LV wound coil for 160MVA, 200 MVA and 315MVA Power Transformer (without any outer insulation).
2) Measurement of resistance of each finished coil (HV, IV & LV).
3) Measurement and current density calculation of each winding.
4) Copper purity test (after cutting from finished coil offered for inspection).

Calibration Certificates of all measuring instrument to be used during stage and final inspection shall be produced and that will be in conformity to our relevant Clauses of GCC/Technical Specification.

III. On Tank

1) Physical inspection & Dimension Checking of Main Tank
2) Vacuum Withstand Test on the Main Tank.
3) Pressure Withstand Test on the Main Tank.
4) Leakage Test of the main Tank.

42 TEST AT FACTORY AND TEST CERTIFICATES:

All Routine and Acceptance tests at manufacturer’s works shall be carried out in presence of WBSETCL’s representative in compliance with IS: 2026/ IEC 60076 (as amended up-to- date) on the transformers. The entire cost of acceptance test, routine test and special test as follows that are to be carried out as per relevant IS shall be treated as included in quoted price of transformer.

1. The Contractor shall offer the transformer for final testing with at least 15 (fifteen) days prior to the actual date when the tests will be carried out.
2. Internal test report of each transformer and test reports of prime core and coil from NABL accredited laboratory shall be submitted at least 7(seven) day prior to date of testing. Offer for final test shall be accepted after receiving above documents.
3. After final testing 6 (six) copies of test reports of each transformer along with soft copy and soft copy of final drawing shall be submitted to the Chief Engineer, Engg. Deptt. prior to issuance of formal MICC & DI letter.

The following tests are to be carried out as a part of routine tests as per IS:2026 / IEC 60076 and as per our standard requirement:

i) Resistance of each winding at all taps (wherever applicable).
ii) Turns ratio for all sets of windings on each tap
iii) Polarity and phase vector relationship
iv) Measurement of No Load Loss and No Load Current at 90, 100 and 110 percent rated voltage.
v) Impedance voltage at normal, maximum and minimum tap for each pair of winding.
vi) Measurement of insulation resistance between windings and between windings and earth. IR value is to be measured before and after impulse test.

vii) Measurement of aux. losses.

viii) Regulation at rated load and at unity, 0.8 lagging power factors

ix) Efficiencies at u.p.f. and 0.8 p.f. at 50%, 75% and 100% loading.

x) Measurement of Load Losses.

xi) Separate source voltage withstand test.

xii) Induced over voltage withstand test with Partial Discharge measurement.

xiii) Tests on on-load Tap changer.

xiv) Magnetic Balance test.

xv) Oil leakage test on tanks and all oil filled compartment of transformer shall be tested as per CBIP for 12 hours (minimum) filled with oil for which no oil leak shall occur.

xvi) Test on pressure relief device.

xvii) Operation of Tap changer from RTCC as well as from OLTC

xviii) Test on RTCC, Cooler Control Cabinet and Marshalling Box.

xix) Measurement of Tan Delta Capacitance of Windings and Bushings.

xx) Zero Sequence Impedance measurement.

xxi) Frequency Response Analysis (FRA) in factory and field (sub-station) for all voltage classes & rating for all transformers against each P.O.

xxii) Switching Impulse test for 315MVA, 400/220/33KV transformer

xxiii) Full wave Lightning Impulse test for the line terminal for 80/50 MVA 132/33 KV, 200/160 MVA 220/132/33 KV & 315MVA, 400/220/33KV transformer as per IS/IEC

xxiv) BDV measurement of transformer oil.

xxv) DGA of Transformer oil after type test

xxvi) Functional test of Fiber Optic sensor type hot spot measurement system

xxvii) Visual, dimensional checking of transformer.

The following Type tests are to be carried out for at least on one of each type of transformer against each purchase order without any price implication:

a) Temperature rise test (cl.no.16.8 of IS 2026)

b) Full wave Lightning Impulse withstand Tests in all phases (including chopped and reduced chopped wave) for 132KV class & below (IEC 60076-3/ IS:2026, Part-III,2009 (Included in Routine test) Cl. 12 & 13): This test shall be carried out on HV, IV & LV limb in case of three winding transformer and HV & LV limb in case of two winding transformer.

c) Checking of acoustics noise level.

d) Pressure & vacuum test on finished empty tank during stage inspection.

The pressure & vacuum test on remaining finished empty tank of each type against each P.O. shall also to be carried out at the tank manufacturer premises in presence of representative of transformer manufacturer and test report are to be submitted to the Chief Engineer, Engg. Deptt, for approval and clearance towards use of the said tank.

43 TEST AT FACTORY AND TEST CERTIFICATE:

All Routine and Acceptance test at manufacturer’s works shall be carried out in presence of WBSETCL and manufacturer’s representative in compliance with IS:2026/ IEC 60076 (as amended up-to-date) on the transformer.
44 **TEST ON ASSOCIATED EQUIPMENT:**

Porcelain Bushings, Windings Temperature Indicating Devices. Dial Thermometers, Buchholz Relays, Auxiliary Meters, Motor Starting Contactors, Control devices, Insulating oil and other associated equipment covered by the contract shall be certified by the contractor to have been tested in accordance with the relevant IS specification by the manufacturer. The contractor shall furnish a certificate of compliance of the relevant tests, for all auxiliary apparatus. Six certified copies of the aforesaid test reports shall have to be furnished.

45 **TOLERANCES**

As per the clause of the IS 2026/ IEC 60076 tolerances will be applicable to certain guaranteed values as depicted in the following tables:

<table>
<thead>
<tr>
<th>SL</th>
<th>Item</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Voltage ratio at no load on principal tapping for a specified first pair of windings</td>
<td>The lower of the following values: a) ±0.5 % of declared ratio b) ±1/10 of the actual percentage impedance on the principal tapping</td>
</tr>
<tr>
<td>2</td>
<td>Voltage ratio on other tapings, same pair</td>
<td>To be agreed, but not less than the lesser of the values in a) and b) above</td>
</tr>
<tr>
<td>3</td>
<td>Voltage ratio for further pairs</td>
<td>To be agreed, but not less than the lesser of the values in a) and b) above</td>
</tr>
<tr>
<td>4</td>
<td>Short-circuit impedance for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– a separate-winding transformer with two windings, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– a specified first pair of separate windings in a multi-winding transformer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) principal tapping</td>
<td>When the impedance value is ≥10 % : ±7,5 % of the declared value</td>
</tr>
<tr>
<td></td>
<td>b) any other tapping of the pair</td>
<td>When the impedance value is <10 % : ±10 % of the declared value</td>
</tr>
<tr>
<td>5</td>
<td>Short-circuit impedance for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– an auto-connected pair of winding, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– a specified second pair of separate windings in a multi-winding transformer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) principal tapping</td>
<td>When the impedance value is ≥10 % : ±10 % of the declared value</td>
</tr>
<tr>
<td></td>
<td>b) any other tapping of the pair</td>
<td>When the impedance value is <10 % : ±15 % of the declared value</td>
</tr>
<tr>
<td></td>
<td>c) further pairs of windings</td>
<td>To be agreed, but ≥15 %</td>
</tr>
<tr>
<td>6</td>
<td>No-load current</td>
<td>+30 % of the declared value</td>
</tr>
</tbody>
</table>
NOTE - For certain auto-transformers and booster transformers the smallness of their impedance justifies more liberal tolerance. Transformers having large tapping ranges, particularly if the range is asymmetrical, may also require special consideration. On the other hand, for example, when a transformer is to be combined with previously existing units, it may be justified to specify and agree on narrower impedance tolerances. Matters of special tolerances shall be brought to attention at the tender stage, and revised tolerances agreed upon between manufacturer and purchaser.

NOTE - 'Declared value' should be understood as meaning the value declared by the manufacturer.

46 DRYING OUT AT THE MANUFACTURER'S WORKS:

All the Tests shall be conducted after complete Drying out at the works. The transformer shall be despatched complete after being dried out under vacuum and filed with inert gas, ready to be put into commission, without further drying out at site.

47 SUPERVISION OF ERECTION, TESTING & COMMISSIONING:

The MANUFACTURER shall arrange for the services of their Supervisor/Engineer from the manufacturer during erection, testing and commissioning of the equipment at sites at free of cost as many time as required by WBSETCL.
<table>
<thead>
<tr>
<th>Sl. NO</th>
<th>DESCRIPTION</th>
<th>ITEMS</th>
<th>TECHNICAL PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rated capacity</td>
<td>a) 315 MVA</td>
<td>3-ph Auto transformer with tertiary winding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) 200/160 MVA</td>
<td>3-ph Auto transformer with tertiary winding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) 80/50/31.5/20MVA</td>
<td>3-ph Two winding transformer</td>
</tr>
<tr>
<td>2</td>
<td>Voltage Rating :</td>
<td>a) 315 MVA</td>
<td>400/220/33 KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) 200/160 MVA</td>
<td>220/132/33 KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) 80/50/31.5/20MVA</td>
<td>220/33KV, 132/ 33 KV (as per Tender)</td>
</tr>
<tr>
<td>3</td>
<td>Maximum system voltage (KV)</td>
<td>For 400 KV/ 220 KV/ 132 KV/ 33 KV</td>
<td>420/245/145/36</td>
</tr>
<tr>
<td>4</td>
<td>Cooling</td>
<td>For 315 MVA/200/160 MVA/ 80 MVA / 50 MVA 31.5 / 20 MVA</td>
<td>ONAN/ONAF/OFAF</td>
</tr>
<tr>
<td>5</td>
<td>Rating at different type of cooling</td>
<td>For All Rating</td>
<td>60% / 80% / 100%; 65%/100% for 31.5/20MVA, 132/33KV TR</td>
</tr>
<tr>
<td>6</td>
<td>Type of Transformer</td>
<td>For All Rating</td>
<td>Outdoor Type Interconnection Power Transformer</td>
</tr>
<tr>
<td>7</td>
<td>Tertiary winding voltage (KV)</td>
<td>for 160 MVA,200 MVA & 315MVA</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Tertiary winding capacity (MVA) for 315MVA, 160MVA (Combined loading shall not exceed the rated capacity)</td>
<td>For 315MVA</td>
<td>105MVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For 200 MVA</td>
<td>60 MVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For 160MVA</td>
<td>45MVA</td>
</tr>
<tr>
<td>9</td>
<td>System frequency (Hz)</td>
<td>For All Rating</td>
<td>50 ± 3%</td>
</tr>
<tr>
<td>10</td>
<td>No. of phases in system</td>
<td>For All Rating</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>System Earthing</td>
<td>For 315 MVA,200 MVA & 160 MVA</td>
<td>(i) Effectively earthed, Neutral is Solidly earthed. Tertiary of 33 KV winding is ungrounded.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For 80/50/31.5/20MVA</td>
<td>(ii) 33KV system is earthed through grounding transformer for 220/132/33KV & 132/33KV transformer</td>
</tr>
<tr>
<td></td>
<td>Insulation level of the winding (withstand)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>i) 1.2x50 micro-second lightning impulse (KVP)</td>
<td>For 400/220/132/33 KV</td>
<td>1300/950/550/170 KV</td>
</tr>
<tr>
<td></td>
<td>ii) Tertiary winding of 400/220/33 & 220/132/33 KV Transformer (KVP)</td>
<td>For 52 KV Tertiary</td>
<td>250 KV</td>
</tr>
<tr>
<td></td>
<td>iii) Power frequency withstand (KVrms)</td>
<td>FOR 400/220/132/33 KV</td>
<td>570/395/230/70</td>
</tr>
<tr>
<td></td>
<td>iv) Power frequency withstand - Tertiary winding of 220/132/33 KV Transformer (KVrms) & 400/220/33KV Transformer</td>
<td>For 33 KV Tertiary</td>
<td>95</td>
</tr>
<tr>
<td>13</td>
<td>System fault level (KA).</td>
<td>400 KV</td>
<td>50 KA FOR 1 SEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 KV</td>
<td>40 KA FOR 3 SEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132 KV</td>
<td>31.5 KA FOR 3 SEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 KV</td>
<td>25 KA FOR 3 SEC</td>
</tr>
<tr>
<td>14</td>
<td>250/2500 micro sec. Switching Surge withstand voltage(KVp)</td>
<td>for 315 MVA,400 KV</td>
<td>1050 for HV side of 400KV Tr.</td>
</tr>
<tr>
<td>15</td>
<td>Partial Discharge level</td>
<td></td>
<td>500 Pc.</td>
</tr>
<tr>
<td>16</td>
<td>Insulation level of HV(N) winding</td>
<td>i) 1.2x50 micro-second Lightning impulse (KVP)</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Power Frequency withstand (KVrms)</td>
<td>38</td>
</tr>
<tr>
<td>19</td>
<td>Maximum hot spot temperature (° Centigrade) over weighted average temp of 32 Degree C</td>
<td></td>
<td>98 ° Centigrade</td>
</tr>
<tr>
<td>20</td>
<td>Type of tap changer</td>
<td>i) For transformer of all rating</td>
<td>On Load Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Tapping range</td>
<td>+ /- 10% in 16 equal steps @ 1.25%</td>
</tr>
<tr>
<td></td>
<td>Partial Discharge level</td>
<td>For 220 & 132 KV</td>
<td>500 Pc.</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>22</td>
<td>Vector group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>315 MVA</td>
<td>YNaod11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 MVA</td>
<td>YNaod11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160 MVA</td>
<td>YNaod11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80MVA/50MVA/31.5/20MVA</td>
<td>YNd1</td>
</tr>
<tr>
<td>23</td>
<td>Short circuit level (KA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>400KV(1 Sec)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220KV(3 Sec)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132 KV (3 Sec)</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33KV (3 Sec.)</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>Minimum creepage Distance (mm) of bushing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>400KV</td>
<td>10500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 KV</td>
<td>6125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132 KV</td>
<td>3625</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 KV</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52KV</td>
<td>1300</td>
</tr>
<tr>
<td>25</td>
<td>Impedance voltage at normal tap (percent) at 75°C (The impedance volt at HV-IV for 3 winding transformer (Guaranteed))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>315 MVA</td>
<td>12.5 Between HV-IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 MVA</td>
<td>12.5 Between HV-IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160 MVA</td>
<td>12.5 Between HV-IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80MVA/50MVA/31.5/20MVA</td>
<td>12.5 Between HV-LV</td>
</tr>
<tr>
<td>26</td>
<td>Type of insulating media</td>
<td>For All Rating</td>
<td>Mineral insulating oil immersed.</td>
</tr>
<tr>
<td>27</td>
<td>Indoor or outdoor type</td>
<td>For All Rating</td>
<td>Outdoor</td>
</tr>
<tr>
<td>28</td>
<td>Insulation level to earth of neutral terminal</td>
<td>For All Rating</td>
<td>Similar to 33KV bushing for transformer above 31.5 MVA</td>
</tr>
<tr>
<td>29</td>
<td>Auxiliary AC supply to Fans, tap changer etc. (volt)</td>
<td>For All Rating</td>
<td>3-ph, 400 ±10%</td>
</tr>
<tr>
<td>30</td>
<td>Auxiliary DC supply for alarm and tripping (volt)</td>
<td>For All Rating</td>
<td>220 ±10%</td>
</tr>
<tr>
<td>31</td>
<td>Altitude above mean sea level</td>
<td>For All Rating</td>
<td>Less than 1000 mtr.</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Terminal Connectors</td>
<td>400/220/33KV Transformer & 220/132/33KV for ACSR Moose / ACSR Moose. For ACSR Moose/Moose or suitable cable. 33 KV Tertiary For 1.5 inch Aluminium pipe/ACSR Moose.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Acoustic noise level (DB) of all transformers</td>
<td>For All Rating As per NEMA Publication TR-1.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Insulating level of bushing: 1.2/50 micro second lightning impulse withstand voltage (KVP)</td>
<td>400 KV 1425 220 KV 1050 132 KV 650 33 KV 170 Tertiary 33 KV 250 HV Neutral 170</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Insulating level of bushing: One minute Power frequency withstand voltage (KVrms)(dry & wet).</td>
<td>400 KV 630 220 KV 460 132 KV 275 33 KV 70 Tertiary 33 KV 95 HV Neutral 70</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Minimum Total Creepage distance (mm) for Bushing</td>
<td>400 KV 10500 220 KV 6125 132 KV 3625 33 KV 900 Tertiary 33 KV 1300 HV Neutral 900</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Width of Rail Gauge (mm)</td>
<td>For All Rating 1676</td>
<td></td>
</tr>
</tbody>
</table>
Annexure- 1

Definitions of a similar transformer

[As per IEC 60076-5]

Transformers similar to a reference transformer can be identified by comparison using the following non-exclusive list of critical features:

1. Same type of operation, for example generator step-up unit, distribution, interconnection transformer as the reference unit;

2. Same arrangement of main windings and geometrical sequence as the reference unit:

3. Same type of main windings for example, helical, disc, layer, pancake, as the reference unit.

4. Absorbed power at short-circuit (rated power per unit short-circuit impedance) between 30% and 130% of that of the reference unit;

5. Axial forces and relative winding stresses (ratio of actual stress to critical stress) at short-circuit not exceeding 110% of those in the reference unit;

6. Same type of winding conductors, for example, aluminum, aluminum alloy, annealed or hardened copper, metal foil, wire, flat conductor, continuously transposed conductors and epoxy bonding, if used, as the reference unit;

7. Same manufacturing processes as the reference unit;

8. Same clamping and supporting arrangement.

9. Same conceptual design, for example dry-type, oil-immersed type, core type with concentric windings, sandwich type, shell type, circular coils, non-circular coils as the reference unit.
CORE DETAILS OF BUSHING CT

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Description</th>
<th>No. of Core</th>
<th>Core No.</th>
<th>Application</th>
<th>Current Ratio</th>
<th>Output Burden (VA) at Lower Ratio</th>
<th>ISF (<)</th>
<th>Accuracy Class as per IS 2705</th>
<th>Min Knee point Voltage (V)</th>
<th>Max CT Secy Winding Resistance (W) at 75°C</th>
<th>Max excitation current at Knee point Voltage (mA) at highest Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>400KV side, 220KV side & Neutral of 315 MVA, 400/220/33KV Transformer</td>
<td>1</td>
<td>1</td>
<td>Protection</td>
<td>1000/1A</td>
<td>PS Class</td>
<td>1000V</td>
<td>2.5</td>
<td>30 at Vk/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii)</td>
<td>220KV side, 132 KV side & Neutral of 200MVA Transformer</td>
<td>1</td>
<td>1</td>
<td>Protection</td>
<td>1000/1A</td>
<td>PS Class</td>
<td>1000V</td>
<td>2.5</td>
<td>30 at Vk/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii)</td>
<td>220KV side, 132 KV side & Neutral of 160MVA Transformer</td>
<td>1</td>
<td>1</td>
<td>Protection</td>
<td>800/1A</td>
<td>PS Class</td>
<td>1000V</td>
<td>2.5</td>
<td>30 at Vk/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv)</td>
<td>132KV side of 50MVA Transformer</td>
<td>1</td>
<td>1</td>
<td>Protection</td>
<td>400-300/1A</td>
<td>PS Class</td>
<td>800 - 600V</td>
<td>1.5</td>
<td>30 at Vk/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v)</td>
<td>220KV side & Neutral of 80MVA / 50 MVA Transformer</td>
<td>1</td>
<td>1</td>
<td>Protection</td>
<td>400/1A</td>
<td>PS Class</td>
<td>800V</td>
<td>1.5</td>
<td>30 at Vk/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vi)</td>
<td>33KV side of 50MVA Transformer</td>
<td>1</td>
<td>1</td>
<td>Protection</td>
<td>1000/1A</td>
<td>PS Class</td>
<td>500V</td>
<td>2.5</td>
<td>30 at Vk/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vii)</td>
<td>132KV side & Neutral of 31.5MVA / 20MVA Transformer</td>
<td>1</td>
<td>1</td>
<td>Protection</td>
<td>150/1A</td>
<td>PS Class</td>
<td>600</td>
<td>1.5</td>
<td>30 at Vk/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>viii)</td>
<td>33KV side of 31.5MVA / 20MVA Transformer</td>
<td>1</td>
<td>1</td>
<td>Protection</td>
<td>800/1A</td>
<td>PS Class</td>
<td>400</td>
<td>2.5</td>
<td>30 at Vk/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ix)</td>
<td>33KV side of 80 MVA Transformer</td>
<td>1</td>
<td>1</td>
<td>Protection</td>
<td>1600/1A</td>
<td>PS Class</td>
<td>1000</td>
<td>4</td>
<td>30 at Vk/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Guaranteed Technical Particulars (GTP) of Offered Transformer
(To be submitted separately for separate MVA capacity of Transformer in case of common Tender)

<table>
<thead>
<tr>
<th>SL</th>
<th>DESCRIPTION</th>
<th>SUBMISSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Data of Bidder</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Name & Address of Company</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Country of Origin</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Business Type of Company (eg. Manufacturer/Supplier/Transporter etc.)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>General Data of Transformer</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Conforming Applicable Standards (including Bushing & other)</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Conceptual Design of Transformer (e.g. Outdoor oil immersed core type /Indoor dry core type/etc)</td>
<td></td>
</tr>
</tbody>
</table>
| c | Type of Operation of the Transformer (e.g. Interconnection / Distribution/Generator step-up)
* Interconnection means used in Transmission Grid SS | | |
<p>| d | Rated Frequency (in Hz) | | |
| e | Number of Phase | | |
| f | Rated MVA Capacity Of the Transformer (ONAN/ONAF/OFAF) | | |</p>
<table>
<thead>
<tr>
<th>g</th>
<th>Rated No-load Voltage of the Transformer (HV/IV/LV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>No Load Current in percent of Full Load current at rated KV & rated frequency at Normal Tap</td>
</tr>
<tr>
<td>i</td>
<td>Vector Group</td>
</tr>
<tr>
<td>j</td>
<td>Type of Cooling</td>
</tr>
<tr>
<td>k</td>
<td>Rating at Different Cooling</td>
</tr>
</tbody>
</table>

3 Thermal Data

<table>
<thead>
<tr>
<th>a</th>
<th>Temperature rise of top oil (in (^\circ) C) above ambient temperature of 50 (^\circ) C measured by thermometer with ONAN/ONAF/OFAF cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Temperature rise of winding measured by resistance : With ONAN/ONAF/OFAF cooling, in (^\circ) C</td>
</tr>
<tr>
<td>c</td>
<td>Limit of hot spot temperature in (^\circ) C for which the transformer is designed</td>
</tr>
</tbody>
</table>

4 Impedance Data

<table>
<thead>
<tr>
<th>A</th>
<th>Percentage Impedance Between HV & IV at highest tap/normal tap/lowest tap</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Percentage Impedance Between HV & LV</td>
</tr>
<tr>
<td>C</td>
<td>Percentage Impedance Between IV & LV</td>
</tr>
<tr>
<td>D</td>
<td>Zero Sequence Impedance at 75 (^\circ) C for Highest Tap/Normal Tap/Lowest Tap at 100% rating</td>
</tr>
</tbody>
</table>

5 Guaranteed Loss

<p>| a | Guaranteed no load loss (KW) on principal tap at rated voltage and Frequency |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Guaranteed load loss at rated current at principal tap at 75°C (KW) in HV-IV combination for Auto Transformer & HV-LV combination for Two Winding Transformer</td>
</tr>
<tr>
<td>c</td>
<td>Maximum Cooler Loss (KW)</td>
</tr>
<tr>
<td>6</td>
<td>Efficiency & Regulation</td>
</tr>
<tr>
<td>e</td>
<td>Efficiency (in percent) at unity power factor at 75°C</td>
</tr>
<tr>
<td>f</td>
<td>a) At 50% Full Load</td>
</tr>
<tr>
<td>g</td>
<td>b) At 75% Full Load</td>
</tr>
<tr>
<td>h</td>
<td>c) At Full Load</td>
</tr>
<tr>
<td>i</td>
<td>Regulation at Unity Power factor</td>
</tr>
<tr>
<td>j</td>
<td>Regulation at 0.8 lagging Power factor</td>
</tr>
<tr>
<td>7</td>
<td>Core</td>
</tr>
<tr>
<td>a</td>
<td>Net core area in sq. metre</td>
</tr>
<tr>
<td>b</td>
<td>Material & Grade of core Laminations</td>
</tr>
<tr>
<td>c</td>
<td>Thickness of stampings (mm)</td>
</tr>
<tr>
<td>d</td>
<td>Maximum flux density (in Tesla) at 100% rated no load voltage and rated frequency</td>
</tr>
<tr>
<td>e</td>
<td>Maximum flux density (in Tesla) at 110% rated no load voltage and rated frequency</td>
</tr>
<tr>
<td>f</td>
<td>Over Excitation withstand time (secs) at 110% / 125% /140%</td>
</tr>
<tr>
<td>g</td>
<td>Noise level (in db) when energized at normal voltage and normal frequency at no load.</td>
</tr>
<tr>
<td></td>
<td>Main Winding</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>a</td>
<td>Number of Winding</td>
</tr>
<tr>
<td>b</td>
<td>Type of Winding (eg. Helical / Disc/ layer /pancake) in HV/IV/LV</td>
</tr>
<tr>
<td>c</td>
<td>Arrangement of main winding & Geometrical sequence</td>
</tr>
<tr>
<td>d</td>
<td>Brief Details of Material of Winding Conductors (as per tech spec Page-8/46)</td>
</tr>
<tr>
<td>e</td>
<td>Conductor Area (Sq. cm) of Winding (HV/IV/LV)</td>
</tr>
<tr>
<td>f</td>
<td>Maximum Current Density (in A/Sq. cm) of Winding (HV/IV/LV)</td>
</tr>
<tr>
<td>g</td>
<td>Winding Insulation for HV - Type & Class, Graded or ungraded</td>
</tr>
<tr>
<td>h</td>
<td>Winding Insulation for IV - Type & Class, Graded or ungraded</td>
</tr>
<tr>
<td>i</td>
<td>Winding Insulation for Tertiary Winding - Type & Class, Graded or ungraded</td>
</tr>
<tr>
<td>j</td>
<td>Insulation Material Between HV-IV-Tertiary</td>
</tr>
<tr>
<td>k</td>
<td>Insulation Material Between Core & Winding</td>
</tr>
<tr>
<td>l</td>
<td>Type of Axial Support of winding : HV/IV/Tertiary</td>
</tr>
<tr>
<td>m</td>
<td>Type of Radial Coil support : HV/IV/Tertiary</td>
</tr>
<tr>
<td></td>
<td>Tertiary Winding</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>a</td>
<td>Rated KV</td>
</tr>
<tr>
<td>b</td>
<td>Maximum continuous MVA Capacity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Insulation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Switching Surge withstand KV peak (for 400 KV Transformer) for HV Winding</td>
</tr>
<tr>
<td>c</td>
<td>Power Frequency Withstand Voltage KV rms for HV/IV/Tertiary/ HV Neutral Winding</td>
</tr>
<tr>
<td>d</td>
<td>Partial Discharge Level (in pc) at 364 KV Between phase & Ground</td>
</tr>
<tr>
<td>e</td>
<td>RIV (in micro Volts) at 1.1 times minimum phase to ground voltage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Bushings</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Manufacturer of HV/IV/Tertiary/HV Neutral/LV Neutral</td>
</tr>
<tr>
<td>b</td>
<td>Type of HV/IV/Tertiary/HV Neutral/LV Neutral</td>
</tr>
<tr>
<td>c</td>
<td>Rated KV of HV/IV/Tertiary/HV Neutral/ LV Neutral</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>d</td>
<td>Rated Current of HV/IV/Tertiary/HV Neutral/LV Neutral</td>
</tr>
<tr>
<td>e</td>
<td>LI Voltage (1.2/50 micro-sec): HV/IV/Tertiary/HV Neutral/ LV Neutral (KVp)</td>
</tr>
<tr>
<td>f</td>
<td>Power Frequency Withstand Voltage (Dry): HV/IV/Tertiary/HV Neutral/ LV Neutral (KVrms)</td>
</tr>
<tr>
<td>g</td>
<td>Power Frequency Withstand Voltage (Wet): HV/IV/Tertiary/HV Neutral/ LV Neutral (KVrms)</td>
</tr>
<tr>
<td>h</td>
<td>Minimum clearance between phases in AIR: HV/IV/Tertiary (mm)</td>
</tr>
<tr>
<td>i</td>
<td>Minimum clearance between phases in OIL: HV/IV/Tertiary (mm)</td>
</tr>
<tr>
<td>j</td>
<td>Minimum clearance between Bushing Line Terminal to Tank: HV/IV/Tertiary (mm)</td>
</tr>
<tr>
<td>k</td>
<td>Creepage Distance (in mm): HV/IV/Tertiary/HVN/LVN</td>
</tr>
<tr>
<td></td>
<td>12 Tap Changer</td>
</tr>
<tr>
<td>a</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>b</td>
<td>Type</td>
</tr>
<tr>
<td>c</td>
<td>Total Tap Range (+) percent to (-) percent of Voltage</td>
</tr>
<tr>
<td>d</td>
<td>Percent of Voltage per tap step</td>
</tr>
<tr>
<td>e</td>
<td>Time (in second) for total tap change</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>f</td>
<td>Tapping provided on (winding)</td>
</tr>
<tr>
<td>13</td>
<td>TANK</td>
</tr>
<tr>
<td>a</td>
<td>Type of Transformer Tank (eg Bell Type / Top Cover)</td>
</tr>
<tr>
<td>b</td>
<td>Thickness of Top Cover plates (mm)</td>
</tr>
<tr>
<td>c</td>
<td>Thickness of Tank Bottom Plates (mm)</td>
</tr>
<tr>
<td>d</td>
<td>Thickness of Tank side Plates (mm)</td>
</tr>
<tr>
<td>e</td>
<td>Thickness of Radiator Fin (mm)</td>
</tr>
<tr>
<td>f</td>
<td>Approximate weight : Core (in Kg)</td>
</tr>
<tr>
<td>g</td>
<td>Approximate weight : Windings (in Kg)</td>
</tr>
<tr>
<td>h</td>
<td>Approximate weight : Tank & Fittings (in Kg)</td>
</tr>
<tr>
<td>i</td>
<td>Approximate weight : Oil (in Kg)</td>
</tr>
<tr>
<td>j</td>
<td>Approximate weight : Total weight (in Kg)</td>
</tr>
<tr>
<td>k</td>
<td>Approximate required quantity of oil, in Litres</td>
</tr>
<tr>
<td>l</td>
<td>Radiator Fitting arrangement (Tank mounted/ Separate)</td>
</tr>
<tr>
<td>14</td>
<td>Whether optical sensor for Hot Spot temperature measurement provided? (yes/no)</td>
</tr>
<tr>
<td>15</td>
<td>Whether Electronic Impact Recorder provided? (yes/no)</td>
</tr>
</tbody>
</table>